Bayesian Nonparametric Data Analysis

This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book's structure follows a data analysis perspective. As such, the chapters are organized by traditional d...

Полное описание

Библиографическая информация
Опубликовано в: :Springer eBooks
Главные авторы: Müller, Peter (Автор), Quintana, Fernando Andres (Автор), Jara, Alejandro (Автор), Hanson, Tim (Автор)
Соавтор: SpringerLink (Online service)
Формат: Электронная книга
Язык:English
Публикация: Cham : Springer International Publishing : Imprint: Springer, 2015.
Серии:Springer Series in Statistics,
Предметы:
Online-ссылка:http://dx.doi.org/10.1007/978-3-319-18968-0
Перейти в каталог НБ ТГУ
Оглавление:
  • Preface
  • Acronyms
  • 1.Introduction
  • 2.Density Estimation - DP Models
  • 3.Density Estimation - Models Beyond the DP
  • 4.Regression
  • 5.Categorical Data
  • 6.Survival Analysis
  • 7.Hierarchical Models
  • 8.Clustering and Feature Allocation
  • 9.Other Inference Problems and Conclusions
  • Appendix: DP package.