Arithmetically Cohen-Macaulay Sets of Points in P^1 x P^1

This brief presents a solution to the interpolation problem for arithmetically Cohen-Macaulay (ACM) sets of points in the multiprojective space P^1 x P^1.  It collects the various current threads in the literature on this topic with the aim of providing a self-contained, unified introduction while a...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Authors: Guardo, Elena (Author), Van Tuyl, Adam (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:SpringerBriefs in Mathematics,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-24166-1
Перейти в каталог НБ ТГУ
LEADER 03511nam a22005415i 4500
001 vtls000560823
003 RU-ToGU
005 20210922090204.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319241661  |9 978-3-319-24166-1 
024 7 |a 10.1007/978-3-319-24166-1  |2 doi 
035 |a to000560823 
039 9 |y 201702122355  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA251.3 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.44  |2 23 
100 1 |a Guardo, Elena.  |e author.  |9 467332 
245 1 0 |a Arithmetically Cohen-Macaulay Sets of Points in P^1 x P^1  |h electronic resource  |c by Elena Guardo, Adam Van Tuyl. 
250 |a 1st ed. 2015. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015.  |9 742221 
300 |a VIII, 134 p. 25 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a Introduction -- The Biprojective Space P^1 x P^1 -- Points in P^1 x P^1 -- Classification of ACM Sets of Points in P^1 x P^1 -- Homological Invariants -- Fat Points in P^1 x P^1 -- Double Points and Their Resolution -- Applications -- References. 
520 |a This brief presents a solution to the interpolation problem for arithmetically Cohen-Macaulay (ACM) sets of points in the multiprojective space P^1 x P^1.  It collects the various current threads in the literature on this topic with the aim of providing a self-contained, unified introduction while also advancing some new ideas.  The relevant constructions related to multiprojective spaces are reviewed first, followed by the basic properties of points in P^1 x P^1, the bigraded Hilbert function, and ACM sets of points.  The authors then show how, using a combinatorial description of ACM points in P^1 x P^1, the bigraded Hilbert function can be computed and, as a result, solve the interpolation problem.  In subsequent chapters, they consider fat points and double points in P^1 x P^1 and demonstrate how to use their results to answer questions and problems of interest in commutative algebra.  Throughout the book, chapters end with a brief historical overview, citations of related results, and, where relevant, open questions that may inspire future research.  Graduate students and researchers working in algebraic geometry and commutative algebra will find this book to be a valuable contribution to the literature. 
650 0 |a mathematics.  |9 566183 
650 0 |a Algebraic Geometry.  |9 303686 
650 0 |a Commutative algebra.  |9 466051 
650 0 |a Commutative rings.  |9 466052 
650 0 |a Projective Geometry.  |9 448013 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Commutative Rings and Algebras.  |9 303210 
650 2 4 |a Algebraic Geometry.  |9 303686 
650 2 4 |a Projective Geometry.  |9 448013 
700 1 |a Van Tuyl, Adam.  |e author.  |9 467333 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a SpringerBriefs in Mathematics,  |9 445669 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-24166-1 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=415080 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 415080  |d 415080