Special Topics in Mathematics for Computer Scientists Sets, Categories, Topologies and Measures /

This textbook addresses the mathematical description of sets, categories, topologies and measures, as part of the basis for advanced areas in theoretical computer science like semantics, programming languages, probabilistic process algebras, modal and dynamic logics and Markov transition systems. Us...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Author: Doberkat, Ernst-Erich (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-22750-4
Перейти в каталог НБ ТГУ
LEADER 04000nam a22004935i 4500
001 vtls000560657
003 RU-ToGU
005 20210922090223.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319227504  |9 978-3-319-22750-4 
024 7 |a 10.1007/978-3-319-22750-4  |2 doi 
035 |a to000560657 
039 9 |y 201702122345  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA8.9-QA10.3 
072 7 |a UYA  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a COM051010  |2 bisacsh 
082 0 4 |a 005.131  |2 23 
100 1 |a Doberkat, Ernst-Erich.  |e author.  |9 467491 
245 1 0 |a Special Topics in Mathematics for Computer Scientists  |h electronic resource  |b Sets, Categories, Topologies and Measures /  |c by Ernst-Erich Doberkat. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015.  |9 742221 
300 |a XX, 719 p. 124 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Preface.- 1 The Axiom of Choice and Some of Its Equivalents -- 2 Categories.- 3 Topological Spaces.- 4 Measures for Probabilistic Systems -- List of Examples -- References -- Index. 
520 |a This textbook addresses the mathematical description of sets, categories, topologies and measures, as part of the basis for advanced areas in theoretical computer science like semantics, programming languages, probabilistic process algebras, modal and dynamic logics and Markov transition systems. Using motivations, rigorous definitions, proofs and various examples, the author systematically introduces the Axiom of Choice, explains Banach-Mazur games and the Axiom of Determinacy, discusses the basic constructions of sets and the interplay of coalgebras and Kripke models for modal logics with an emphasis on Kleisli categories, monads and probabilistic systems. The text further shows various ways of defining topologies, building on selected topics like uniform spaces, Gödel's Completeness Theorem and topological systems. Finally, measurability, general integration, Borel sets and measures on Polish spaces, as well as the coalgebraic side of Markov transition kernels along with applications to probabilistic interpretations of modal logics are presented. Special emphasis is given to the integration of (co-)algebraic and measure-theoretic structures, a fairly new and exciting field, which is demonstrated through the interpretation of game logics. Readers familiar with basic mathematical structures like groups, Boolean algebras and elementary calculus including mathematical induction will discover a wealth of useful research tools. Throughout the book, exercises offer additional information, and case studies give examples of how the techniques can be applied in diverse areas of theoretical computer science and logics. References to the relevant mathematical literature enable the reader to find the original works and classical treatises, while the bibliographic notes at the end of each chapter provide further insights and discussions of alternative approaches. 
650 0 |a Computer Science.  |9 155490 
650 0 |a Mathematical logic.  |9 461383 
650 0 |a Category theory (Mathematics).  |9 461838 
650 0 |a Homological algebra.  |9 461839 
650 1 4 |a Computer Science.  |9 155490 
650 2 4 |a Mathematical Logic and Formal Languages.  |9 303363 
650 2 4 |a Mathematical Logic and Foundations.  |9 306112 
650 2 4 |a Category Theory, Homological Algebra.  |9 307371 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-22750-4 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=415186 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645) 
999 |c 415186  |d 415186