Interpretability of Computational Intelligence-Based Regression Models

The key idea of this book is that hinging hyperplanes, neural networks and support vector machines can be transformed into fuzzy models, and interpretability of the resulting rule-based systems can be ensured by special model reduction and visualization techniques. The first part of the book deals w...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Authors: Kenesei, Tamás (Author), Abonyi, János (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:SpringerBriefs in Computer Science,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-21942-4
Перейти в каталог НБ ТГУ
LEADER 03368nam a22005535i 4500
001 vtls000560542
003 RU-ToGU
005 20210922090314.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319219424  |9 978-3-319-21942-4 
024 7 |a 10.1007/978-3-319-21942-4  |2 doi 
035 |a to000560542 
039 9 |y 201702122337  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Kenesei, Tamás.  |e author.  |9 467919 
245 1 0 |a Interpretability of Computational Intelligence-Based Regression Models  |h electronic resource  |c by Tamás Kenesei, János Abonyi. 
250 |a 1st ed. 2015. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015.  |9 742221 
300 |a X, 82 p. 34 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Introduction -- Interpretability of Hinging Hyperplanes -- Interpretability of Neural Networks -- Interpretability of Support Vector Machines -- Summary. 
520 |a The key idea of this book is that hinging hyperplanes, neural networks and support vector machines can be transformed into fuzzy models, and interpretability of the resulting rule-based systems can be ensured by special model reduction and visualization techniques. The first part of the book deals with the identification of hinging hyperplane-based regression trees. The next part deals with the validation, visualization and structural reduction of neural networks based on the transformation of the hidden layer of the network into an additive fuzzy rule base system. Finally, based on the analogy of support vector regression and fuzzy models, a three-step model reduction algorithm is proposed to get interpretable fuzzy regression models on the basis of support vector regression.   The authors demonstrate real-world use of the algorithms with examples taken from process engineering, and they support the text with downloadable Matlab code. The book is suitable for researchers, graduate students and practitioners in the areas of computational intelligence and machine learning. 
650 0 |a Computer Science.  |9 155490 
650 0 |a Data mining.  |9 306371 
650 0 |a Artificial intelligence.  |9 274099 
650 0 |a Computational Intelligence.  |9 307538 
650 1 4 |a Computer Science.  |9 155490 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 274102 
650 2 4 |a Computational Intelligence.  |9 307538 
650 2 4 |a Data Mining and Knowledge Discovery.  |9 306372 
700 1 |a Abonyi, János.  |e author.  |9 333882 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a SpringerBriefs in Computer Science,  |9 412137 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-21942-4 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=415475 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645) 
999 |c 415475  |d 415475