A Concise Introduction to Analysis

This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables. Considerable space is given to developing Riemann integration theor...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Author: Stroock, Daniel W. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-24469-3
Перейти в каталог НБ ТГУ
LEADER 03517nam a22005415i 4500
001 vtls000560853
003 RU-ToGU
005 20210922090342.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319244693  |9 978-3-319-24469-3 
024 7 |a 10.1007/978-3-319-24469-3  |2 doi 
035 |a to000560853 
039 9 |y 201702122357  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Stroock, Daniel W.  |e author.  |9 299968 
245 1 2 |a A Concise Introduction to Analysis  |h electronic resource  |c by Daniel W. Stroock. 
250 |a 1st ed. 2015. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015.  |9 742221 
300 |a XII, 218 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Analysis on The Real Line -- Elements of Complex Analysis -- Integration -- Higher Dimensions -- Integration in Higher Dimensions -- A Little Bit of Analytic Function Theory. 
520 |a This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables. Considerable space is given to developing Riemann integration theory in higher dimensions, including a rigorous treatment of Fubini's theorem, polar coordinates and the divergence theorem. These are used in the final chapter to derive Cauchy's formula, which is then applied to prove some of the basic properties of analytic functions. Among the unusual features of this book is the treatment of analytic function theory as an application of ideas and results in real analysis. For instance, Cauchy's integral formula for analytic functions is derived as an application of the divergence theorem. The last section of each chapter is devoted to exercises that should be viewed as an integral part of the text. A Concise Introduction to Analysis should appeal to upper level undergraduate mathematics students, graduate students in fields where mathematics is used, as well as to those wishing to supplement their mathematical education on their own. Wherever possible, an attempt has been made to give interesting examples that demonstrate how the ideas are used and why it is important to have a rigorous grasp of them. 
650 0 |a mathematics.  |9 566183 
650 0 |a Functional analysis.  |9 566329 
650 0 |a Functions of complex variables.  |9 304502 
650 0 |a Integral equations.  |9 566371 
650 0 |a Functions of real variables.  |9 462081 
650 0 |a Sequences (Mathematics).  |9 306506 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Functional Analysis.  |9 566330 
650 2 4 |a Real Functions.  |9 304716 
650 2 4 |a Functions of a Complex Variable.  |9 304504 
650 2 4 |a Sequences, Series, Summability.  |9 306507 
650 2 4 |a Integral Equations.  |9 566372 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-24469-3 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=415622 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 415622  |d 415622