Structure-Preserving Algorithms for Oscillatory Differential Equations II
This book describes a variety of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations. Such systems arise in many branches of science and engineering, and the examples in the book include systems from quantum physics, celestial mechanics...
Published in: | Springer eBooks |
---|---|
Main Authors: | , , |
Corporate Author: | |
Format: | eBook |
Language: | English |
Published: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2015.
|
Edition: | 1st ed. 2015. |
Subjects: | |
Online Access: | http://dx.doi.org/10.1007/978-3-662-48156-1 Перейти в каталог НБ ТГУ |
Table of Contents:
- Matrix-variation-of-constants formula
- Improved St ¨ormer-Verlet formulae with applications
- Improved Filon-type asymptotic methods for highly oscillatory differential equations
- Efficient energy-preserving integrators for multi-frequency oscillatory Hamiltonian systems
- An extended discrete gradient formula for multi-frequency oscillatory Hamiltonian systems
- Trigonometric Fourier collocation methods for multi-frequency oscillatory systems
- Error bounds for explicit ERKN integrators for multi-frequency oscillatory systems
- Error analysis of explicit TSERKN methods for highly oscillatory systems
- Highly accurate explicit symplectic ERKN methods for multi-frequency oscillatory Hamiltonian systems
- Multidimensional ARKN methods for general multi-frequency oscillatory second-order IVPs
- A simplified Nystr¨om-tree theory for ERKN integrators solving oscillatory systems
- An efficient high-order explicit scheme for solving Hamiltonian nonlinear wave equations.