Grammar-Based Feature Generation for Time-Series Prediction

This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounde...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Authors: De Silva, Anthony Mihirana (Author), Leong, Philip H. W. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2015.
Series:SpringerBriefs in Applied Sciences and Technology,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-981-287-411-5
Перейти в каталог НБ ТГУ
LEADER 03486nam a22005175i 4500
001 vtls000562941
003 RU-ToGU
005 20210922090805.0
007 cr nn 008mamaa
008 170213s2015 si | s |||| 0|eng d
020 |a 9789812874115  |9 978-981-287-411-5 
024 7 |a 10.1007/978-981-287-411-5  |2 doi 
035 |a to000562941 
039 9 |y 201702130236  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a De Silva, Anthony Mihirana.  |e author.  |9 470487 
245 1 0 |a Grammar-Based Feature Generation for Time-Series Prediction  |h electronic resource  |c by Anthony Mihirana De Silva, Philip H. W. Leong. 
260 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2015.  |9 742242 
300 |a XI, 99 p. 28 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
505 0 |a Introduction -- Feature Selection -- Grammatical Evolution -- Grammar Based Feature Generation -- Application of Grammar Framework to Time-series Prediction -- Case Studies -- Conclusion. 
520 |a This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounded by the non-linear and non-stationary nature of the real world time-series. The performance of machine learning techniques, among other things, depends on suitable engineering of features. This book proposes a systematic way for generating suitable features using context-free grammar. A number of feature selection criteria are investigated and a hybrid feature generation and selection algorithm using grammatical evolution is proposed. The book contains graphical illustrations to explain the feature generation process. The proposed approaches are demonstrated by predicting the closing price of major stock market indices, peak electricity load and net hourly foreign exchange client trade volume. The proposed method can be applied to a wide range of machine learning architectures and applications to represent complex feature dependencies explicitly when machine learning cannot achieve this by itself. Industrial applications can use the proposed technique to improve their predictions. 
650 0 |a engineering.  |9 224332 
650 0 |a Pattern Recognition.  |9 304129 
650 0 |a Economics, Mathematical.  |9 304111 
650 0 |a Computational Intelligence.  |9 307538 
650 1 4 |a Engineering.  |9 224332 
650 2 4 |a Computational Intelligence.  |9 307538 
650 2 4 |a Pattern Recognition.  |9 304129 
650 2 4 |a Quantitative Finance.  |9 304891 
700 1 |a Leong, Philip H. W.  |e author.  |9 470488 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a SpringerBriefs in Applied Sciences and Technology,  |9 410983 
856 4 0 |u http://dx.doi.org/10.1007/978-981-287-411-5 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=417074 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647) 
999 |c 417074  |d 417074