Unsteady conjugate natural convection in a three-dimensional porous enclosure

Transient-free convection in a porous enclosure having heat-conducting solid walls of finite thickness under conditions of convective heat exchange with an environment was studied numerically. A heat source of constant temperature was located at the bottom of the cavity. The governing equations in p...

Full description

Bibliographic Details
Published in:Numerical heat transfer. Part A : Applications Vol. 68, № 3. P. 243-267
Main Author: Sheremet, Mikhail A.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000578402
Перейти в каталог НБ ТГУ
LEADER 02326nab a2200289 c 4500
001 vtls000578402
003 RU-ToGU
005 20230319210659.0
007 cr |
008 170627|2015 enk s a eng dd
024 7 |a 10.1080/10407782.2014.977172  |2 doi 
035 |a to000578402 
039 9 |a 201707130954  |c 201706270918  |d VLOAD  |y 201706261243  |z Александр Эльверович Гилязов 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Sheremet, Mikhail A.  |9 89131 
245 1 0 |a Unsteady conjugate natural convection in a three-dimensional porous enclosure  |c M. A. Sheremet 
504 |a Библиогр.: 36 назв. 
520 3 |a Transient-free convection in a porous enclosure having heat-conducting solid walls of finite thickness under conditions of convective heat exchange with an environment was studied numerically. A heat source of constant temperature was located at the bottom of the cavity. The governing equations in porous volume formulated in dimensionless variables such as the temperature and vector potential functions within the Darcy-Boussinesq approach and the transient three-dimensional heat conduction equation based on the Fourier hypothesis for solid walls with corresponding initial and boundary conditions were solved using an iterative implicit finite-difference method. The main objective was to investigate the influence of the Rayleigh number 103 ≤ Ra ≤ 106, the Darcy number 10−5 ≤ Da ≤ 10−3, the thermal conductivity ratio 1 ≤ k1,2 ≤ 20, the solid wall thickness ratio 0.1 ≤ l/L ≤ 0.3, and the dimensionless time 0 ≤ τ ≤ 200 on the fluid flow and heat transfer. Comprehensive analysis of the effects of these key parameters on the average Nusselt number at the heat source surface was conducted. 
653 |a естественная конвекция 
653 |a пористые среды 
655 4 |a статьи в журналах  |9 879358 
773 0 |t Numerical heat transfer. Part A : Applications  |d 2015  |g Vol. 68, № 3. P. 243-267  |x 1040-7782 
852 4 |a RU-ToGU 
856 7 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000578402 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=419759 
908 |a статья 
999 |c 419759  |d 419759