On one property of martingales with conditionally Gaussian increments and its application in the theory of nonasymptotic inference

A transformation of a discrete-time martingale with conditionally Gaussian increments into a sequence of i.i.d. standard Gaussian random variables is proposed as based on a sequence of stopping times constructed using the quadratic variation. It is shown that sequential estimators for the parameters...

Full description

Bibliographic Details
Published in:Doklady mathematics Vol. 94, № 3. P. 676-680
Main Author: Konev, Victor V.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000583015
Перейти в каталог НБ ТГУ
LEADER 01766nab a2200313 c 4500
001 vtls000583015
003 RU-ToGU
005 20230319211417.0
007 cr |
008 170928|2016 ru s a eng d
024 7 |a 10.1134/S1064562416060235  |2 doi 
035 |a to000583015 
039 9 |a 201710120924  |c 201709281119  |d VLOAD  |y 201709281113  |z Александр Эльверович Гилязов 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Konev, Victor V.  |9 97657 
245 1 0 |a On one property of martingales with conditionally Gaussian increments and its application in the theory of nonasymptotic inference  |c V. V. Konev 
504 |a Библиогр.: с. 680 
520 3 |a A transformation of a discrete-time martingale with conditionally Gaussian increments into a sequence of i.i.d. standard Gaussian random variables is proposed as based on a sequence of stopping times constructed using the quadratic variation. It is shown that sequential estimators for the parameters in AR(1) and generalized first-order autoregressive models have a nonasymptotic normal distribution. 
653 |a мартингалы 
653 |a гауссовские случайные величины 
653 |a дискретное время 
653 |a авторегрессионные модели первого порядка 
655 4 |a статьи в журналах  |9 879358 
773 0 |t Doklady mathematics  |d 2016  |g Vol. 94, № 3. P. 676-680  |x 1064-5624 
852 4 |a RU-ToGU 
856 7 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000583015 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=425992 
908 |a статья 
999 |c 425992  |d 425992