Adaptive homing is in P

Homing preset and adaptive experiments with Finite State Machines (FSMs) are widely used when a non-initialized discrete event system is given for testing and thus, has to be set to the known state at the first step. The length of a shortest homing sequence is known to be exponential with respect to...

Full description

Bibliographic Details
Published in:Electronic proceedings in theoretical computer science Vol. 180. P. 73-78
Main Author: Kushik, Natalia G.
Other Authors: Yevtushenko, Nina V.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000625703
Перейти в каталог НБ ТГУ
LEADER 02284nab a2200313 c 4500
001 vtls000625703
003 RU-ToGU
005 20230319212514.0
007 cr |
008 180425|2015 at s a eng d
024 7 |a 10.4204/EPTCS.180.5  |2 doi 
035 |a to000625703 
039 9 |a 201805071030  |c 201804251615  |d VLOAD  |y 201804251609  |z Александр Эльверович Гилязов 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Kushik, Natalia G.  |9 101862 
245 1 0 |a Adaptive homing is in P  |c N. G. Kushik, N. V. Yevtushenko 
504 |a Библиогр.: 16 назв. 
520 3 |a Homing preset and adaptive experiments with Finite State Machines (FSMs) are widely used when a non-initialized discrete event system is given for testing and thus, has to be set to the known state at the first step. The length of a shortest homing sequence is known to be exponential with respect to the number of states for a complete observable nondeterministic FSM while the problem of checking the existence of such sequence (Homing problem) is PSPACE-complete. In order to decrease the complexity of related problems, one can consider adaptive experiments when a next input to be applied to a system under experiment depends on the output responses to the previous inputs. In this paper, we study the problem of the existence of an adaptive homing experiment for complete observable nondeterministic machines. We show that if such experiment exists then it can be constructed with the use of a polynomial-time algorithm with respect to the number of FSM states. 
653 |a конечные автоматы 
653 |a недетерминированные машины 
653 |a алгоритм полиномиальной временной сложности 
655 4 |a статьи в журналах  |9 879358 
700 1 |a Yevtushenko, Nina V.  |9 89308 
773 0 |t Electronic proceedings in theoretical computer science  |d 2015  |g Vol. 180. P. 73-78  |x 2075-2180 
852 4 |a RU-ToGU 
856 7 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000625703 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=433983 
908 |a статья 
999 |c 433983  |d 433983