Submicron scale tissue multifractal anisotropy in polarized laser light scattering
The spatial fluctuations of the refractive index within biological tissues exhibit multifractal anisotropy, leaving its signature as a spectral linear diattenuation of scattered polarized light. The multifractal anisotropy has been quantitatively assessed by the processing of relevant Mueller matrix...
Published in: | Laser physics letters Vol. 15, № 3. P. 035601 (1-6) |
---|---|
Other Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000628759 Перейти в каталог НБ ТГУ |
Summary: | The spatial fluctuations of the refractive index within biological tissues exhibit multifractal anisotropy, leaving its signature as a spectral linear diattenuation of scattered polarized light. The multifractal anisotropy has been quantitatively assessed by the processing of relevant Mueller matrix elements in the Fourier domain, utilizing the Born approximation and subsequent multifractal analysis. The differential scaling exponent and width of the singularity spectrum appear to be highly sensitive to the structural multifractal anisotropy at the micron/sub-micron length scales. An immediate practical use of these multifractal anisotropy parameters was explored for non-invasive screening of cervical precancerous alterations ex vivo, with the indication of a strong potential for clinical diagnostic purposes. |
---|---|
Bibliography: | Библиогр.: 15 назв. |
ISSN: | 1612-2011 |