Quantum mechanics without quanta: 2. The nature of the electron

In this paper, I argue that we can avoid the paradoxes connected with the wave-particle duality if we consider some classical wave field-"an electron wave"-instead of electrons as the particles and consider the wave equations (Dirac, Klein-Gordon, Pauli and Schrödinger) as the field equat...

Full description

Bibliographic Details
Published in:Quantum studies: mathematics and foundations Vol. 4, № 1. P. 29-58
Main Author: Rashkovskiy, Sergey A.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000645558
Перейти в каталог НБ ТГУ
LEADER 02537nab a2200337 c 4500
001 vtls000645558
003 RU-ToGU
005 20230319213839.0
007 cr |
008 181211|2017 xxu s a eng dd
024 7 |a 10.1007/s40509-016-0085-7  |2 doi 
035 |a to000645558 
039 9 |a 201812131403  |c 201812111701  |d VLOAD  |y 201812111645  |z Александр Эльверович Гилязов 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Rashkovskiy, Sergey A.  |9 401434 
245 1 0 |a Quantum mechanics without quanta: 2. The nature of the electron  |c S. A. Rashkovskiy 
504 |a Библиогр.: 39 назв. 
520 3 |a In this paper, I argue that we can avoid the paradoxes connected with the wave-particle duality if we consider some classical wave field-"an electron wave"-instead of electrons as the particles and consider the wave equations (Dirac, Klein-Gordon, Pauli and Schrödinger) as the field equations similar to Maxwell equations for the electromagnetic field. It is shown that such an electron field must have an electric charge, an intrinsic angular momentum and an intrinsic magnetic moment continuously distributed in the space. In this case, no paradoxes are associated with the infinite electromagnetic energy of the "electron" and its anomalous from the standpoint of the classical electrodynamics gyromagnetic ratio. It is shown that from this perspective, the double-slit experiment, the Born rule, the Heisenberg uncertainty principle and the Compton effect all have a simple explanation within classical field theory. The proposed perspective allows consideration of quantum mechanics not as a theory of particles but as a classical field theory similar to Maxwell electrodynamics. 
653 |a Гейзенберга принцип неопределенности 
653 |a квантовая механика 
653 |a электроны 
653 |a классическая электродинамика 
653 |a Борна правило 
653 |a корпускулярно-волновой дуализм 
655 4 |a статьи в журналах  |9 879358 
773 0 |t Quantum studies: mathematics and foundations  |d 2017  |g Vol. 4, № 1. P. 29-58  |x 2196-5609 
852 4 |a RU-ToGU 
856 7 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000645558 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=444512 
908 |a статья 
999 |c 444512  |d 444512