Quantum mechanics without quanta: 2. The nature of the electron
In this paper, I argue that we can avoid the paradoxes connected with the wave-particle duality if we consider some classical wave field-"an electron wave"-instead of electrons as the particles and consider the wave equations (Dirac, Klein-Gordon, Pauli and Schrödinger) as the field equat...
Published in: | Quantum studies: mathematics and foundations Vol. 4, № 1. P. 29-58 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000645558 Перейти в каталог НБ ТГУ |
LEADER | 02537nab a2200337 c 4500 | ||
---|---|---|---|
001 | vtls000645558 | ||
003 | RU-ToGU | ||
005 | 20230319213839.0 | ||
007 | cr | | ||
008 | 181211|2017 xxu s a eng dd | ||
024 | 7 | |a 10.1007/s40509-016-0085-7 |2 doi | |
035 | |a to000645558 | ||
039 | 9 | |a 201812131403 |c 201812111701 |d VLOAD |y 201812111645 |z Александр Эльверович Гилязов | |
040 | |a RU-ToGU |b rus |c RU-ToGU | ||
100 | 1 | |a Rashkovskiy, Sergey A. |9 401434 | |
245 | 1 | 0 | |a Quantum mechanics without quanta: 2. The nature of the electron |c S. A. Rashkovskiy |
504 | |a Библиогр.: 39 назв. | ||
520 | 3 | |a In this paper, I argue that we can avoid the paradoxes connected with the wave-particle duality if we consider some classical wave field-"an electron wave"-instead of electrons as the particles and consider the wave equations (Dirac, Klein-Gordon, Pauli and Schrödinger) as the field equations similar to Maxwell equations for the electromagnetic field. It is shown that such an electron field must have an electric charge, an intrinsic angular momentum and an intrinsic magnetic moment continuously distributed in the space. In this case, no paradoxes are associated with the infinite electromagnetic energy of the "electron" and its anomalous from the standpoint of the classical electrodynamics gyromagnetic ratio. It is shown that from this perspective, the double-slit experiment, the Born rule, the Heisenberg uncertainty principle and the Compton effect all have a simple explanation within classical field theory. The proposed perspective allows consideration of quantum mechanics not as a theory of particles but as a classical field theory similar to Maxwell electrodynamics. | |
653 | |a Гейзенберга принцип неопределенности | ||
653 | |a квантовая механика | ||
653 | |a электроны | ||
653 | |a классическая электродинамика | ||
653 | |a Борна правило | ||
653 | |a корпускулярно-волновой дуализм | ||
655 | 4 | |a статьи в журналах |9 879358 | |
773 | 0 | |t Quantum studies: mathematics and foundations |d 2017 |g Vol. 4, № 1. P. 29-58 |x 2196-5609 | |
852 | 4 | |a RU-ToGU | |
856 | 7 | |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000645558 | |
856 | |y Перейти в каталог НБ ТГУ |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=444512 | ||
908 | |a статья | ||
999 | |c 444512 |d 444512 |