Classification of audio samples by convolutional networks in audiobeehive monitoring
In the investigation, we consider the problem of classification of audio samples resulting from the audio beehive monitoring. Audio beehive monitoring is a key component of electronic beehive monitoring (EBM) that can potentially automate the identification of various stressors for honeybee colonies...
Published in: | Вестник Томского государственного университета. Управление, вычислительная техника и информатика № 45. С. 68-75 |
---|---|
Main Author: | Kulyukin, Vladimir Alekseevich |
Other Authors: | Mukherjee, Sarbajit, Burkatovskaya, Yulia B. |
Format: | Article |
Language: | Russian |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000645833 Перейти в каталог НБ ТГУ |
Similar Items
-
In situ classification of raw audio samples by convolutional neural networks in electronic beehive monitoring
by: Kulyukin, Vladimir Alekseevich -
Детектирование звука сердечного сокращения при помощи методов машинного обучения
by: Файб, Семен Владимирович -
Possibilities for audio analysis with neural networks
by: Solís Romeu, Edgar - The system simulating the state of the objects and the process of their monitoring with the help of the convolutional neural network
-
Использование нейросетевого подхода в задаче распознавания коронавирусной инфекции по рентгеновским снимкам пациентов
by: Бугакова, Дарья Дмитриевна