Approximate solutions and symmetry of a two-component nonlocal reaction-diffusion population model of the Fisher-KPP type

We propose an approximate analytical approach to a (1+1) dimensional two-component system consisting of a nonlocal generalization of the well-known Fisher-Kolmogorov-Petrovskii- Piskunov (KPP) population equation and a diffusion equation for the density of the active substance solution surrounding t...

Full description

Bibliographic Details
Published in:Symmetry Vol. 11, № 3. P. 366 (1-19)
Main Author: Shapovalov, Alexander V.
Other Authors: Trifonov, Andrey Yu. 1963-2021
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000660104
Перейти в каталог НБ ТГУ
LEADER 02637nab a2200325 c 4500
001 vtls000660104
003 RU-ToGU
005 20230319215421.0
007 cr |
008 190704|2019 sz s a eng d
024 7 |a 10.3390/sym11030366  |2 doi 
035 |a to000660104 
039 9 |a 201907081554  |c 201907041629  |d VLOAD  |y 201907041626  |z Александр Эльверович Гилязов 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Shapovalov, Alexander V.  |9 90375 
245 1 0 |a Approximate solutions and symmetry of a two-component nonlocal reaction-diffusion population model of the Fisher-KPP type  |c A. V. Shapovalov, A. Yu. Trifonov 
504 |a Библиогр.: 39 назв. 
520 3 |a We propose an approximate analytical approach to a (1+1) dimensional two-component system consisting of a nonlocal generalization of the well-known Fisher-Kolmogorov-Petrovskii- Piskunov (KPP) population equation and a diffusion equation for the density of the active substance solution surrounding the population. Both equations of the system have terms that describe the interaction effects between the population and the active substance. The first order perturbation theory is applied to the system assuming that the interaction parameter is small. The Wentzel-Kramers-Brillouin (WKB)-Maslov semiclassical approximation is applied to the generalized nonlocal Fisher-KPP equation with the diffusion parameter assumed to be small, which corresponds to population dynamics under certain conditions. In the framework of the approach proposed, we consider symmetry operators which can be used to construct families of special approximate solutions to the system of model equations, and the procedure for constructing the solutions is illustrated by an example. The approximate solutions are discussed in the context of the released activity effect variously debated in the literature. 
653 |a Фишера-Колмогорова-Петровского-Пискунова уравнение 
653 |a приближенные решения 
653 |a квазиклассическое приближение 
653 |a симметрия 
655 4 |a статьи в журналах  |9 879358 
700 1 |a Trifonov, Andrey Yu.  |d 1963-2021  |9 94516 
773 0 |t Symmetry  |d 2019  |g Vol. 11, № 3. P. 366 (1-19)  |x 2073-8994 
852 4 |a RU-ToGU 
856 4 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000660104 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=457437 
908 |a статья 
999 |c 457437  |d 457437