Adomian decomposition method for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovsky-Piskunov equation
The Adomian decomposition method is applied to construct an approximate solution of the generalized onedimensional Fisher Kolmogorov-Petrovsky-Piskunov equation describing the population dynamics with nonlocal competitive losses. An approximate solution is constructed in the class of decreasing func...
Опубликовано в: : | Russian physics journal Vol. 62, № 4. P. 710-719 |
---|---|
Главный автор: | Shapovalov, Alexander V. |
Другие авторы: | Trifonov, Andrey Yu. 1963-2021 |
Формат: | Статья в журнале |
Язык: | English |
Предметы: | |
Online-ссылка: | http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000673330 Перейти в каталог НБ ТГУ |
Похожие документы
-
Adomyan decomposition method for a two-component nonlocal reaction-diffusion model of the Fisher-Kolmogorov-Petrovsky-Piskunov type
по: Shapovalov, Alexander V. -
Метод разложения Адомиана для одномерного нелокального уравнения Фишера – Колмогорова – Петровского – Пискунова
по: Шаповалов, Александр Васильевич -
Influence of the environment on pattern formation in the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov model
по: Shapovalov, Alexander V. -
Asymptotics semiclassically concentrated on curves for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation
по: Levchenko, E. A. -
Asymptotics of the multidimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation near a quasistationary solution
по: Levchenko, E. A.