Adomyan decomposition method for a two-component nonlocal reaction-diffusion model of the Fisher-Kolmogorov-Petrovsky-Piskunov type
We consider an approach to constructing approximate analytical solutions for the one-dimensional twocomponent reaction diffusion model describing the dynamics of population interacting with the active substance surrounding the population. The system of model equations includes the nonlocal generaliz...
Published in: | Russian physics journal Vol. 62, № 5. P. 835-847 |
---|---|
Main Author: | Shapovalov, Alexander V. |
Other Authors: | Trifonov, Andrey Yu. 1963-2021 |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000673332 Перейти в каталог НБ ТГУ |
Similar Items
-
Adomian decomposition method for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovsky-Piskunov equation
by: Shapovalov, Alexander V. -
Influence of the environment on pattern formation in the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov model
by: Shapovalov, Alexander V. -
Asymptotics semiclassically concentrated on curves for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation
by: Levchenko, E. A. -
Asymptotics of the multidimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation near a quasistationary solution
by: Levchenko, E. A. -
Метод разложения Адомиана для одномерного нелокального уравнения Фишера – Колмогорова – Петровского – Пискунова
by: Шаповалов, Александр Васильевич