Summary: | Рассмотрен подход к построению приближенных аналитических решений для одномерной двухкомпонентной реакционно-диффузионной модели, описывающей динамику популяции, взаимодействующей с активным веществом, окружающем популяцию. Система модельных уравнений включает нелокальное обобщенное уравнение Фишера – Колмогорова – Петровского – Пискунова для популяционной плотности и уравнение диффузии для плотности активного вещества. Оба уравнения содержат дополнительные члены, описывающие взаимное влияние популяции и активного вещества. Для нахождения приближенных решений на первом этапе применен метод возмущений по малому параметру взаимодействия популяции и активного вещества. На втором этапе для решения уравнений, определяющих члены ряда теории возмущений, используется известный итерационный метод, разработанный Дж. Адомианом. Особенностью данной работы является то, что в качестве обратимого линейного оператора, являющегося частью оператора уравнения, выбирается оператор диффузии, для которого обратный оператор выражается в терминах диффузионного пропагатора. Это позволяет находить приближенные решения в классе убывающих на бесконечности функций. В качестве иллюстрации рассмотрен пример решения задачи Коши для начальных функций гауссова вида.
|