On the distribution of orders of Frobenius action on l-torsion of abelian surfaces

The computation of the order of Frobenius action on the ^-torsion is a part of Schoof - Elkies - Atkin algorithm for point counting on an elliptic curve E over a finite field Fq. The idea of Schoof's algorithm is to compute the trace of Frobenius t modulo primes I and restore it by the Chinese...

Full description

Bibliographic Details
Published in:Прикладная дискретная математика № 48. С. 22-33
Main Author: Kolesnikov, N. S.
Other Authors: Novoselov, S. A.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000721635
Перейти в каталог НБ ТГУ
LEADER 02371nab a2200337 c 4500
001 vtls000721635
003 RU-ToGU
005 20230319220707.0
007 cr |
008 200608|2020 ru s a eng d
024 7 |a 10.17223/20710410/48/3  |2 doi 
035 |a to000721635 
039 9 |a 202006091811  |c 202006091810  |d cat34  |c 202006081817  |d VLOAD  |y 202006081800  |z Александр Эльверович Гилязов 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Kolesnikov, N. S.  |9 502908 
245 1 0 |a On the distribution of orders of Frobenius action on l-torsion of abelian surfaces  |c N. S. Kolesnikov, S. A. Novoselov 
504 |a Библиогр.: 24 назв. 
520 3 |a The computation of the order of Frobenius action on the ^-torsion is a part of Schoof - Elkies - Atkin algorithm for point counting on an elliptic curve E over a finite field Fq. The idea of Schoof's algorithm is to compute the trace of Frobenius t modulo primes I and restore it by the Chinese remainder theorem. Atkin's improvement consists of computing the order r of the Frobenius action on E[£] and of restricting the number t (mod F) to enumerate by using the formula t2 = q(Z + Z-1)2 (mod £). Here Z is a primitive r-th root of unity. In this paper, we generalize Atkin's formula to the general case of abelian variety of dimension g. Classically, finding of the order r involves expensive computation of modular polynomials. We study the distribution of the Frobenius orders in case of abelian surfaces and q = 1 (mod F) in order to replace these expensive computations by probabilistic algorithms. 
653 |a абелевы поверхности 
653 |a эллиптические кривые 
653 |a абелево многообразие 
653 |a Фробениуса эндоморфизм 
653 |a подсчет точек 
655 4 |a статьи в журналах  |9 879358 
700 1 |a Novoselov, S. A.  |9 477237 
773 0 |t Прикладная дискретная математика  |d 2020  |g № 48. С. 22-33  |x 2071-0410  |w 0210-48760 
852 4 |a RU-ToGU 
856 4 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000721635 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=467563 
908 |a статья 
999 |c 467563  |d 467563