Asymptotically optimal pointwise and minimax change-point detection for general stochastic models with a composite post-change hypothesis
A weighted Shiryaev-Roberts change detection procedure is shown to approximately minimize the expected delay to detection as well as higher moments of the detection delay among all change-point detection procedures with the given low maximal local probability of a false alarm within a window of a fi...
Published in: | Journal of multivariate analysis Vol. 174. P. 104541 (1-20) |
---|---|
Main Author: | |
Other Authors: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000723193 Перейти в каталог НБ ТГУ |
Summary: | A weighted Shiryaev-Roberts change detection procedure is shown to approximately minimize the expected delay to detection as well as higher moments of the detection delay among all change-point detection procedures with the given low maximal local probability of a false alarm within a window of a fixed length in pointwise and minimax settings for general non-i.i.d. data models and for the composite post-change hypothesis when the post-change parameter is unknown. We establish very general conditions for models under which the weighted Shiryaev-Roberts procedure is asymptotically optimal. These conditions are formulated in terms of the rate of convergence in the strong law of large numbers for the log-likelihood ratios between the "change" and "no-change" hypotheses, and we also provide sufficient conditions for a large class of ergodic Markov processes. Examples related to multivariate Markov models where these conditions hold are given. |
---|---|
Bibliography: | Библиогр.: 31 назв. |
ISSN: | 0047-259X |