Third order extensions of 3d Chern-Simons interacting to gravity: Hamiltonian formalism and stability

We consider inclusion of interactions between 3d Einstein gravity and the third order extensions of Chern-Simons. Once the gravity is minimally included into the third order vector field equations, the theory is shown to admit a two-parameter series of symmetric tensors with on-shell vanishing covar...

Full description

Bibliographic Details
Published in:Nuclear physics B Vol. 934. P. 634-652
Main Author: Kaparulin, Dmitry S.
Other Authors: Karataeva, Inna Yu, Lyakhovich, Simon L.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000788018
Перейти в каталог НБ ТГУ
LEADER 03434nab a2200361 c 4500
001 vtls000788018
003 RU-ToGU
005 20230319221556.0
007 cr |
008 201111|2018 ne s a eng d
024 7 |a 10.1016/j.nuclphysb.2018.08.001  |2 doi 
035 |a to000788018 
039 9 |a 202011131221  |c 202011111534  |d VLOAD  |y 202011111520  |z Александр Эльверович Гилязов 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Kaparulin, Dmitry S.  |9 335693 
245 1 0 |a Third order extensions of 3d Chern-Simons interacting to gravity: Hamiltonian formalism and stability  |c D. S. Kaparulin, I. Yu. Karataeva, S. L. Lyakhovich 
336 |a Текст 
337 |a электронный 
504 |a Библиогр.: 27 назв. 
520 3 |a We consider inclusion of interactions between 3d Einstein gravity and the third order extensions of Chern-Simons. Once the gravity is minimally included into the third order vector field equations, the theory is shown to admit a two-parameter series of symmetric tensors with on-shell vanishing covariant divergence. The canonical energy-momentum is included into the series. For a certain range of the model parameters, the series include the tensors that meet the weak energy condition, while the canonical energy is unbounded in all the instances. Because of the on-shell vanishing covariant divergence, any of these tensors can be considered as an appropriate candidate for the right hand side of Einstein's equations. If the source differs from the canonical energy momentum, the coupling is non-Lagrangian while the interaction remains consistent with any of the tensors. We reformulate these not necessarily Lagrangian third order equations in the first order formalism which is covariant in the sense of 1+2 decomposition. After that, we find the Poisson bracket such that the first order equations are Hamiltonian in all the instances, be the original third order equations Lagrangian or not. The brackets differ from canonical ones in the matter sector, while the gravity admits the usual PB's in terms of ADM variables. The Hamiltonian constraints generate lapse, shift and gauge transformations of the vector field with respect to these Poisson brackets. The Hamiltonian constraint, being the lapse generator, is interpreted as strongly conserved energy. The matter contribution to the Hamiltonian constraint corresponds to 00-component of the tensor included as a source in the right hand side of Einstein equations. Once the 00-component of the tensor is bounded, the theory meets the usual sufficient condition of classical stability, while the original field equations are of the third order. 
653 |a Черна-Саймонса расширенная теория 
653 |a Эйнштейна гравитация 
653 |a гамильтонов формализм 
653 |a устойчивость 
655 4 |a статьи в журналах  |9 879358 
700 |a Karataeva, Inna Yu  |9 854971 
700 1 |a Lyakhovich, Simon L.  |9 89139 
773 0 |t Nuclear physics B  |d 2018  |g Vol. 934. P. 634-652  |x 0550-3213 
852 4 |a RU-ToGU 
856 4 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000788018 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=474277 
908 |a статья 
999 |c 474277  |d 474277