Alpha band resting-state EEG connectivity is associated with non-verbal intelligence

The aim of the present study was to investigate whether EEG resting state connectivity correlates with intelligence. One-hundred and sixty five participants took part in the study. Six minutes of eyes closed EEG resting state was recorded for each participant. Graph theoretical connectivity metric...

Full description

Bibliographic Details
Published in:Frontiers in human neuroscience Vol. 14. P. 10 (1-10)
Other Authors: Tabueva, Anna, Adamovich, Timofey, Kovas, Yulia V., Malykh, Sergey B., Zakharov, Ilya
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000795386
Перейти в каталог НБ ТГУ
LEADER 02653nab a2200397 c 4500
001 vtls000795386
003 RU-ToGU
005 20230319222231.0
007 cr |
008 210316|2020 sz s a eng d
024 7 |a 10.3389/fnhum.2020.00010  |2 doi 
035 |a to000795386 
039 9 |a 202103191338  |c 202103161744  |d VLOAD  |y 202103161736  |z Александр Эльверович Гилязов 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
245 1 0 |a Alpha band resting-state EEG connectivity is associated with non-verbal intelligence  |c I. Zakharov, A. Tabueva, T. Adamovich [et al.] 
336 |a Текст 
337 |a электронный 
504 |a Библиогр.: с. 10 (8-10) 
520 3 |a The aim of the present study was to investigate whether EEG resting state connectivity correlates with intelligence. One-hundred and sixty five participants took part in the study. Six minutes of eyes closed EEG resting state was recorded for each participant. Graph theoretical connectivity metrics were calculated separately for two well-established synchronization measures [weighted Phase Lag Index (wPLI) and Imaginary Coherence (iMCOH)] and for sensor- and source EEG space. Non-verbal intelligence was measured with Raven's Progressive Matrices. In line with the Neural Efficiency Hypothesis, path lengths characteristics of the brain networks (Average and Characteristic Path lengths, Diameter and Closeness Centrality) within alpha band range were significantly correlated with non-verbal intelligence for sensor space but no for source space. According to our results, variance in non-verbal intelligence measure can be mainly explained by the graph metrics built from the networks that include both weak and strong connections between the nodes. 
653 |a нейронная эффективность 
653 |a состояние покоя 
653 |a интеллект 
653 |a альфа-диапазон 
653 |a электроэнцефалография 
655 4 |a статьи в журналах  |9 879358 
700 1 |a Tabueva, Anna  |9 510379 
700 1 |a Adamovich, Timofey  |9 510380 
700 1 |a Kovas, Yulia V.  |9 99181 
700 1 |a Malykh, Sergey B.  |9 94225 
700 1 |a Zakharov, Ilya  |9 497140 
773 0 |t Frontiers in human neuroscience  |d 2020  |g Vol. 14. P. 10 (1-10)  |x 1662-5161 
852 4 |a RU-ToGU 
856 4 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000795386 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=479716 
908 |a статья 
999 |c 479716  |d 479716