Use of uncertain additional information in newsvendor models

The newsvendor problem is a popular inventory management problem in supply chain management and logistics. Solutions to the newsvendor problem determine optimal inventory levels. This model is typically fully determined by a purchase and sale prices and a distribution of random market demand. Fr...

Full description

Bibliographic Details
Published in:GOL'20 : proceedings : 2020 5th International conference on logistics operations management (GOL) October, 28-30, 2020, virtual P. 1-6
Main Author: Tarima, Sergey S.
Other Authors: Zenkova, Zhanna N.
Format: Book Chapter
Language:Russian
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000564375
Перейти в каталог НБ ТГУ
LEADER 02781naa a2200337 4500
001 koha000564375
005 20230319232759.0
007 cr |
008 210505s2020 ru fs 000 0 rus d
024 7 |a 10.1109/GOL49479.2020.9314751  |2 doi 
035 |a koha000564375 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Tarima, Sergey S.  |9 562368 
245 1 0 |a Use of uncertain additional information in newsvendor models  |c S. S. Tarima, Z. N. Zenkova 
336 |a Текст 
337 |a электронный 
504 |a Библиогр.: 3 назв. 
520 3 |a The newsvendor problem is a popular inventory management problem in supply chain management and logistics. Solutions to the newsvendor problem determine optimal inventory levels. This model is typically fully determined by a purchase and sale prices and a distribution of random market demand. From a statistical point of view, this problem is often considered as a quantile estimation of a critical fractile which maximizes anticipated profit. The distribution of demand is a random variable and is often estimated on historic data. In an ideal situation, when the probability distribution of demand is known, one can determine the quantile of a critical fractile minimizing a particular loss function. When a parametric family is known, maximum likelihood estimation is asymptotically efficient under certain regularity assumptions and the maximum likelihood estimators (MLEs) are used for estimating quantiles. Then, the Cramer-Rao lower bound determines the lowest possible asymptotic variance for the MLEs. Can one find a quantile estimator with a smaller variance then the Cramer-Rao lower bound? If a relevant additional information is available then the answer is yes. This manuscript considers minimum variance and mean squared error estimation which incorporate additional information for estimating optimal inventory levels. 
653 |a квантильные оценки 
653 |a минимальная дисперсия 
653 |a минимальная среднеквадратичная ошибка 
653 |a модели поставщиков новостей 
655 4 |a статьи в сборниках  |9 879352 
700 1 |a Zenkova, Zhanna N.  |9 564129 
773 0 |t GOL'20 : proceedings : 2020 5th International conference on logistics operations management (GOL) October, 28-30, 2020, virtual  |d Danvers, 2020  |g P. 1-6  |z 9781728164250 
852 4 |a RU-ToGU 
856 4 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000564375 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=564375 
908 |a статья 
999 |c 564375  |d 564375 
039