The palette index of Sierpiński triangle graphs and Sierpiński graphs
The palette of a vertex v of a graph G in a proper edge coloring is the set of colors assigned to the edges which are incident to v. The palette index of G is the minimum number of palettes occurring among all proper edge colorings of G. In this paper, we consider the palette index of Sierpinski gra...
Published in: | Прикладная дискретная математика № 54. С. 99-108 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000723249 Перейти в каталог НБ ТГУ |
Summary: | The palette of a vertex v of a graph G in a proper edge coloring is the set of colors assigned to the edges which are incident to v. The palette index of G is the minimum number of palettes occurring among all proper edge colorings of G. In this paper, we consider the palette index of Sierpinski graphs S" and Sierpinski triangle graphs S" . In particular, we determine the exact value of the palette index of Sierpinski triangle graphs. We also determine the palette index of Sierpinski graphs S" where p is even, p = 3, or n = 2 and p = 41 + 3. |
---|---|
Bibliography: | Библиогр.: 17 назв. |
ISSN: | 2071-0410 |