The palette index of Sierpiński triangle graphs and Sierpiński graphs

The palette of a vertex v of a graph G in a proper edge coloring is the set of colors assigned to the edges which are incident to v. The palette index of G is the minimum number of palettes occurring among all proper edge colorings of G. In this paper, we consider the palette index of Sierpinski gra...

Full description

Bibliographic Details
Published in:Прикладная дискретная математика № 54. С. 99-108
Main Author: Ghazaryan, A.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000723249
Перейти в каталог НБ ТГУ
Description
Summary:The palette of a vertex v of a graph G in a proper edge coloring is the set of colors assigned to the edges which are incident to v. The palette index of G is the minimum number of palettes occurring among all proper edge colorings of G. In this paper, we consider the palette index of Sierpinski graphs S" and Sierpinski triangle graphs S" . In particular, we determine the exact value of the palette index of Sierpinski triangle graphs. We also determine the palette index of Sierpinski graphs S" where p is even, p = 3, or n = 2 and p = 41 + 3.
Bibliography:Библиогр.: 17 назв.
ISSN:2071-0410