Оптимальный алгоритм преобразования ациклического орграфа в сильносвязный
Для двудольного орграфа G , в котором все дуги выходят из первой доли во вторую, решена задача нахождения минимального набора дуг, дополнение которых преобразует его в сильносвязный орграф. Доказано, что минимальное число дополнительных дуг, преобразующих двудольный орграф G в сильносвязный, рав...
Published in: | Прикладная дискретная математика № 54. С. 94-98 |
---|---|
Main Author: | |
Other Authors: | |
Format: | Article |
Language: | Russian |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000723905 Перейти в каталог НБ ТГУ |
Summary: | Для двудольного орграфа G , в котором все дуги выходят из первой доли во вторую, решена задача нахождения минимального набора дуг, дополнение которых преобразует его в сильносвязный орграф. Доказано, что минимальное число дополнительных дуг, преобразующих двудольный орграф G в сильносвязный, равно максимуму из числа вершин первой и второй долей. Построен алгоритм определения минимального набора дополнительных дуг, преобразующих данный орграф в сильносвязный. Этот алгоритм основан на выделении минимального рёберного покрытия, как совокупности несвязанных между собой звезд в орграфе G, и на построении дуг, соединяющих эти звезды. Полученный результат использован для нахождения минимального набора дуг, преобразующих произвольный ациклический орграф в сильносвязный орграф путём выделения рёбер, соединяющих звёзды в минимальном рёберном покрытии. Данная задача возникла при анализе биотехнологических решений, повышающих стабильность функционирования белковых сетей за счёт введения в них обратных связей. |
---|---|
Bibliography: | Библиогр.: 5 назв. |
ISSN: | 2071-0410 |