Автоматическая генерация коротких текстов на основе применения нейронных сетей LSTM и SeqGAN

Проведено исследование качества генерации коротких текстов на основе применения нейронных сетей LSTM и SeqGAN на русском и английском языках. Для обучения нейронной сети используются следующие подходы: оценка максимального правдоподобия и состязательная сеть, генерирующая последовательность (Se...

Full description

Bibliographic Details
Published in:Вестник Томского государственного университета. Управление, вычислительная техника и информатика № 57. С. 118-130
Main Author: Кривошеев, Николай Анатольевич
Other Authors: Иванова, Юлия Александровна 1986-, Спицын, Владимир Григорьевич
Format: Article
Language:Russian
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000725852
Перейти в каталог НБ ТГУ
Description
Summary:Проведено исследование качества генерации коротких текстов на основе применения нейронных сетей LSTM и SeqGAN на русском и английском языках. Для обучения нейронной сети используются следующие подходы: оценка максимального правдоподобия и состязательная сеть, генерирующая последовательность (Sequence Generative Adversarial Nets, SeqGAN). В данной работе реализация SeqGAN не включает алгоритм Монте-Карло. Предложен и реализован подход на основе возведения значений выходного вектора нейронной сети (вектора вероятностей) в степень, большую 1, данная операция позволяет увеличить качество генерируемого текста, но снижает его разнообразие. Обучение и тестирование проводятся на основе следующих выборок данных: сборника русских стихов с сайта Stihi.ru и подписей к изображениям на английском языке из выборки COCO Image Captions. Проведена оценка качества генерации текстов на основе метрики BLEU. Приведены примеры сгенерированных текстов. Проанализированы аналогичные решения.
Bibliography:Библиогр.: 26 назв.
ISSN:1998-8605