Waiting time asymptotic analysis of a M/M/1 retrial queueing system under two types of limiting condition

In our paper, the waiting time analysis of a M/M/1 retrial queueing system is presented and the asymptotic distribution of the number of returns of the tagged request to the orbit is driven since they are connected to each other. The research was conducted by the use of asymptotic analysis method. T...

Full description

Bibliographic Details
Published in:Information Technologies and Mathematical Modelling. Queueing Theory and Applications : 19th International Conference, ITMM 2020, named after A. F. Terpugov, Tomsk, Russia, December 2-5, 2020 : revised selected papers P. 171-185
Main Author: Nazarov, Anatoly A.
Other Authors: Samorodova, Maria
Format: Book Chapter
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000896516
Перейти в каталог НБ ТГУ
LEADER 02693naa a2200361 c 4500
001 koha000896516
005 20230320001955.0
007 cr |
008 220617s2021 sz fs 100 0 eng d
024 7 |a 10.1007/978-3-030-72247-0_13  |2 doi 
035 |a koha000896516 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Nazarov, Anatoly A.  |9 45813 
245 1 0 |a Waiting time asymptotic analysis of a M/M/1 retrial queueing system under two types of limiting condition  |c A. A. Nazarov, M. Samorodova 
336 |a Текст 
337 |a электронный 
504 |a Библиогр.: 29 назв. 
520 3 |a In our paper, the waiting time analysis of a M/M/1 retrial queueing system is presented and the asymptotic distribution of the number of returns of the tagged request to the orbit is driven since they are connected to each other. The research was conducted by the use of asymptotic analysis method. Two different cases are considered. First we conduct analysis under a heavy load condition and then under a low rate of retrials condition. Two different characteristic functions of the waiting time were obtained. The analysis was carried out using asymptotic distributions of the number of requests in the orbit under a heavy load condition and a low rate of retrials condition, which were also obtained. To show the effectiveness of asymptotic results for the considered retrial queuing system, the approximation of the distribution of the number of returns of the tagged request to the orbit in prelimit situation, numerical illustrations and results are given. 
653 |a асимптотический анализ 
653 |a очереди повторных попыток 
653 |a время ожидания 
653 |a количество возвратов 
653 |a количество повторных попыток 
653 |a системы массового обслуживания 
655 4 |a статьи в сборниках  |9 879352 
700 1 |a Samorodova, Maria  |9 487534 
773 0 |t Information Technologies and Mathematical Modelling. Queueing Theory and Applications : 19th International Conference, ITMM 2020, named after A. F. Terpugov, Tomsk, Russia, December 2-5, 2020 : revised selected papers  |d Cham, 2021  |k Communications in computer and information science ; vol. 1391  |g P. 171-185  |z 9783030722463 
852 4 |a RU-ToGU 
856 4 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000896516 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=896516 
908 |a статья 
039
999 |c 896516  |d 896516