О разложении бент-функций от восьми переменных в сумму двух бент-функций
Максимально нелинейная булева функция от чётного числа переменных называется бент-функцией. Исследуется гипотеза о представлении произвольных булевых функций от n переменных степени не больше n/2 как суммы двух бент-функций. Доказано, что произвольная бент-функция от восьми переменных степени не бол...
Published in: | Прикладная дискретная математика. Приложение № 15. С. 40-42 |
---|---|
Main Author: | |
Format: | Article |
Language: | Russian |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000899220 |
Summary: | Максимально нелинейная булева функция от чётного числа переменных называется бент-функцией. Исследуется гипотеза о представлении произвольных булевых функций от n переменных степени не больше n/2 как суммы двух бент-функций. Доказано, что произвольная бент-функция от восьми переменных степени не больше 3 представляется как сумма двух бент-функций. Показано, что каждая квадратичная булева функция от чётного числа переменных n 4 раскладывается в сумму двух бент-функций специального вида. |
---|---|
Bibliography: | Библиогр.: 10 назв. |
ISSN: | 2226-308X |