Adaptive efficient analysis for big data ergodic diffusion models
We consider drift estimation problems for high dimension ergodic diffusion processes in nonparametric setting based on observations at discrete fixed time moments in the case when diffusion coefficients are unknown. To this end on the basis of sequential analysis methods we develop model selection p...
Published in: | Statistical inference for stochastic processes Vol. 25, № 1. P. 127-158 |
---|---|
Main Author: | Galtchouk, L. I. |
Other Authors: | Pergamenshchikov, Serguei M. |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000900724 Перейти в каталог НБ ТГУ |
Similar Items
-
Big data efficient estimating to ergodic diffusion processes
by: Galtchouk, L. I. -
Improved model selection for estimation in semimartingale regression from discrete data
by: Pchelintsev, Evgeny A. -
Adaptive efficient estimation for generalized semi‑Markov big data models
by: Barbu, Vlad Stefan -
Risk efficiency of adaptive one-step prediction of autoregression with parameter drift
by: Kusainov, Marat I. -
Sharp oracle inequalities for drift estimation problems from discrete data
by: Galtchouk, L. I.