The two-dimensional output process of retrial queue with two-way communication

In this paper, we review a two-dimensional output process of the system with repeated calls and called applications. In a system with repeated calls, incoming applications, which found serving unit busy, move to the source of repeated calls, where carry out random exponentially distributed delay, af...

Full description

Bibliographic Details
Published in:Information Technologies and Mathematical Modelling. Queueing Theory and Applications : 19th International Conference, ITMM 2020, named after A. F. Terpugov, Tomsk, Russia, December 2-5, 2020 : revised selected papers P. 279-290
Main Author: Blaginin, Alexey L.
Other Authors: Lapatin, Ivan L.
Format: Book Chapter
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000924946
Перейти в каталог НБ ТГУ
LEADER 02594naa a2200325 c 4500
001 koha000924946
005 20230320003421.0
007 cr |
008 221202s2021 sz fs 100 0 eng d
024 7 |a 10.1007/978-3-030-72247-0_21  |2 doi 
035 |a koha000924946 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Blaginin, Alexey L.  |9 853949 
245 1 4 |a The two-dimensional output process of retrial queue with two-way communication  |c A. L. Blaginin, I. L. Lapatin 
336 |a Текст 
337 |a электронный 
504 |a Библиогр.: 11 назв. 
520 3 |a In this paper, we review a two-dimensional output process of the system with repeated calls and called applications. In a system with repeated calls, incoming applications, which found serving unit busy, move to the source of repeated calls, where carry out random exponentially distributed delay, after which try to receive serving again. While serving unit is free, it can call applications itself with exponentially distributed intensity, which will serve with their serving time parameter. This feature characterises a system as one with called applications. An asymptotic approximation of the two-dimensional characteristic function is obtained under the condition of a large delay of applications in the orbit. Using integral transformations, the asymptotic two-dimensional distribution of the probabilities of the number of applications of different types that have finished serving in the system is found. A numerical analysis of the values of the correlation coefficient of the components of the considered two-dimensional output is carried out. 
653 |a методы асимптотического анализа 
653 |a коэффициент корреляции 
653 |a системы с повторными вызовами 
655 4 |a статьи в сборниках  |9 879352 
700 1 |a Lapatin, Ivan L.  |9 562629 
773 0 |t Information Technologies and Mathematical Modelling. Queueing Theory and Applications : 19th International Conference, ITMM 2020, named after A. F. Terpugov, Tomsk, Russia, December 2-5, 2020 : revised selected papers  |d Cham, 2021  |k Communications in computer and information science ; vol. 1391  |g P. 279-290  |z 9783030722463 
852 4 |a RU-ToGU 
856 4 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000924946 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=924946 
908 |a статья 
999 |c 924946  |d 924946 
039