Carbon sequestration potential of Mg carbonate and silicate biomineralization in the presence of cyanobacterium Synechococcus
Bacterially-induced sequestration of atmospheric CO2 is at the forefront of geomicrobiological research due to high potential of this process in the mitigation of climate warming. Cyanobacteria have been known to form stromatolites since the Precambrian and could be used to enhance this process by s...
Published in: | Chemical geology Vol. 599. P. 120854 (1-13) |
---|---|
Other Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000996389 Перейти в каталог НБ ТГУ |
LEADER | 03572nab a2200397 c 4500 | ||
---|---|---|---|
001 | koha000996389 | ||
005 | 20240417170823.0 | ||
007 | cr | | ||
008 | 230207|2022 ne s a eng d | ||
024 | 7 | |a 10.1016/j.chemgeo.2022.120854 |2 doi | |
035 | |a koha000996389 | ||
040 | |a RU-ToGU |b rus |c RU-ToGU | ||
245 | 1 | 0 | |a Carbon sequestration potential of Mg carbonate and silicate biomineralization in the presence of cyanobacterium Synechococcus |c C. Lamérand, L. S. Shirokova, P. Bénézeth [et al.] |
336 | |a Текст | ||
337 | |a электронный | ||
504 | |a Библиогр.: с. 12-13 | ||
520 | 3 | |a Bacterially-induced sequestration of atmospheric CO2 is at the forefront of geomicrobiological research due to high potential of this process in the mitigation of climate warming. Cyanobacteria have been known to form stromatolites since the Precambrian and could be used to enhance this process by sequestering carbon via the biomineralization of Mg and Ca carbonates. Currently, olivine (MgSiO4) is considered as one of the most efficient silicate minerals suitable for CO2 capture in the form of secondary Mg carbonates. However, the role of dissolved Si on the efficiency of biomineralization is not sufficiently well understood. The present study intended to reproduce in the laboratory the processes of biomineralization by Synechococcus sp. cyanobacteria extracted from modern stromatolites in a carbonate- and Mg-bearing medium containing various Si concentrations, in order to characterize the rates and stoichiometry of reactions as well as mineralogical nature of precipitates. The results demonstrated the dominant role of cyanobacterial metabolism in the precipitation of carbonate minerals by increasing the pH of the medium via photosynthesis and providing a template in the form of cell walls and their EPS for mineral nucleation. Transmission electron microscopy and other microscopic and spectroscopic observations and analyses identified magnesium carbonates and silicates, such as nesquehonite (MgCO3·3H2O) and/or hydromagnesite (Mg5(CO3)4(OH)2·4(H2O) together with amorphous analogue of sepiolite (Mg4Si6O15(OH)2·6H2O) as dominant precipitated minerals. Apparent inorganic C precipitation rates were not affected by the concentration of Mg and Si in the initial solution. However, the carbon sequestration potential was 20-40% higher in the presence of Si. Overall, the experimental approach developed in this study allows efficient reproduction of combined Mg hydroxy‑carbonate and hydrous silicate precipitation under cyanobacterial activity and helps to constrain optimal conditions of cyanobacteria-induced CO2 sequestration. | |
653 | |a цианобактерии | ||
653 | |a осаждение | ||
653 | |a углерод | ||
653 | |a биоминерализация | ||
653 | |a карбонат магния | ||
653 | |a силикаты | ||
655 | 4 | |a статьи в журналах |9 879358 | |
700 | 1 | |a Lamérand, Céline |9 510274 | |
700 | 1 | |a Shirokova, Liudmila S. |9 92089 | |
700 | 1 | |a Bénézeth, Pascale |9 123258 | |
700 | 1 | |a Rols, Jean-Luc |9 421514 | |
700 | 1 | |a Pokrovsky, Oleg S. |9 92087 | |
773 | 0 | |t Chemical geology |d 2022 |g Vol. 599. P. 120854 (1-13) |x 0009-2541 | |
852 | 4 | |a RU-ToGU | |
856 | 4 | |u http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000996389 | |
856 | |y Перейти в каталог НБ ТГУ |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=996389 | ||
908 | |a статья | ||
039 | |b 100 | ||
999 | |c 996389 |d 996389 |