Effect of vacuum conditions and plasma concentration on the chemical composition and adhesion of vacuum-plasma coatings
The paper reports on the chemical composition of titanium nitride (TiN) and silicon (Si) coatings deposited with a new technological vacuum plasma setup which comprises magnetron sputtering systems, arc evaporators, and an efficient plasma generator. It is shown that due to highly clean vacuum condi...
Published in: | Journal of Physics: Conference Series Vol. 652. P. 012020 (1-5) |
---|---|
Main Author: | |
Other Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000577935 Перейти в каталог НБ ТГУ |
Summary: | The paper reports on the chemical composition of titanium nitride (TiN) and silicon (Si) coatings deposited with a new technological vacuum plasma setup which comprises magnetron sputtering systems, arc evaporators, and an efficient plasma generator. It is shown that due to highly clean vacuum conditions and highly clean surface treatment in the gas discharge plasma, both the coating-substrate interface and the coatings as such are almost free from oxygen and carbon. It is found that the coating-substrate interface represents a layer of thickness ≥ 60 nm formed through vacuum plasma mixing of the coating and substrate materials. The TiN coatings obtained on the new equipment display a higher adhesion compared to brass coatings deposited by industrial technologies via intermediate titanium oxide layers. It is concluded that the designed vacuum plasma equipment allows efficient surface modification of materials and articles by vacuum plasma immersion processes. |
---|---|
Bibliography: | Библиогр.: 3 назв. |
ISSN: | 1742-6588 |