On uniform asymptotic normality of sequential estimates of the parameters in unstable autoregression

The paper proposes new sequential least squares estimates for the parameters in autoregressive processes of order đť‘ť. The construction of the procedure, in contrast to those known in the literature, makes use of only one least squares estimate (LSE) for the vector of unknown parameter for any...

Full description

Bibliographic Details
Published in:ĐśеждŃƒĐ˝Đ°Ń€ĐľднаŃŹ наŃƒŃ‡Đ˝Đ°ŃŹ конференция "Đ ĐľбастнаŃŹ статистика и Ń„инансоваŃŹ ĐĽĐ°Ń‚еĐĽĐ°Ń‚ика - 2018" (09-11 июля 2018 Đł.) : сборник статеĐą С. 38-47
Main Author: Konev, Victor V.
Other Authors: Nazarenko, Bogdan N.
Format: Book Chapter
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000649668
Перейти в каталог НБ ТГУ
Description
Summary:The paper proposes new sequential least squares estimates for the parameters in autoregressive processes of order đť‘ť. The construction of the procedure, in contrast to those known in the literature, makes use of only one least squares estimate (LSE) for the vector of unknown parameter for any order đť‘ť. The main point is that the sample Fisher information matrix in the LSE is properly modified by introducing special stopping rules for collecting the data. It is shown that in the i.i.d. case with unspecified error distributions, the new estimates have the property of uniform asymptotic normality for unstable autoregressive processes under some general condition on the parameters. The cases of AR(1), AR(2) and AR(3) processes are considered in detail. The results of numerical simulations are given.
Bibliography:Библиогр.: 15 назв.
ISBN:9785946217507