Properties of associated Boolean functions of quadratic APN functions
For a function F : Fn Fn, it is defined the associated Boolean function yF in 2n variables as follows: yF(a, b) = 1 if a = 0 and equation F(x) + F(x + a) = b has solutions. A vectorial Boolean function F from F2n to F2n is called almost perfect nonlinear (APN) if equation F(x) + F(x + a) = b has at...
Published in: | Прикладная дискретная математика. Приложение № 12. С. 77-79 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000671722 Перейти в каталог НБ ТГУ |