Application of machine learning and laser optical-acoustic spectroscopy to study the profile of exhaled air volatile markers of acute myocardial infarction

Conventional acute myocardial infarction (AMI) diagnosis is quite accurate and has proved its effectiveness. However, despite this, discovering more operative methods of this disease detection is underway. From this point of view, the application of exhaled air analysis for a similar diagnosis is va...

Full description

Bibliographic Details
Published in:Journal of breath research Vol. 15, № 2. P. 027104 (1-15)
Other Authors: Borisov, Alexey V. 1980-, Syrkina, Anna G., Kuzmin, Dmitry A., Ryabov, Vyacheslav V., Boyko, Andrey A., Zakharova, Olga A., Zasedatel, Vyacheslav S., Kistenev, Yury V.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000924834
Перейти в каталог НБ ТГУ
LEADER 03362nab a2200445 c 4500
001 koha000924834
005 20240124180753.0
007 cr |
008 221201|2021 enk s a eng d
024 7 |a 10.1088/1752-7163/abebd4  |2 doi 
035 |a koha000924834 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
245 1 0 |a Application of machine learning and laser optical-acoustic spectroscopy to study the profile of exhaled air volatile markers of acute myocardial infarction  |c A. V. Borisov, A. G. Syrkina, D. A. Kuzmin [et al.] 
336 |a Текст 
337 |a электронный 
504 |a Библиогр.: 67 назв. 
520 3 |a Conventional acute myocardial infarction (AMI) diagnosis is quite accurate and has proved its effectiveness. However, despite this, discovering more operative methods of this disease detection is underway. From this point of view, the application of exhaled air analysis for a similar diagnosis is valuable. The aim of the paper is to research effective machine learning algorithms for the predictive model for AMI diagnosis constructing, using exhaled air spectral data. The target group included 30 patients with primary myocardial infarction. The control group included 42 healthy volunteers. The 'LaserBreeze' laser gas analyzer (Special Technologies Ltd, Russia), based on the dual-channel resonant photoacoustic detector cell and optical parametric oscillator as the laser source, had been used. The pattern recognition approach was applied in the same manner for the set of extracted concentrations of AMI volatile markers and the set of absorption coefficients in a most informative spectral range 2.900 ± 0.125 μm. The created predictive model based on the set of absorption coefficients provided 0.86 of the mean values of both the sensitivity and specificity when linear support vector machine (SVM) combined with principal component analysis was used. The created predictive model based on using six volatile AMI markers (C5H12, N2O, NO2, C2H4, CO, CO2) provided 0.82 and 0.93 of the mean values of the sensitivity and specificity, respectively, when linear SVM was used. 
653 |a острый инфаркт миокарда 
653 |a выдыхаемый воздух 
653 |a машинное обучение 
653 |a лазерная фотоакустическая спектроскопия 
653 |a метод опорных векторов 
653 |a метод главных компонент 
653 |a летучие маркеры 
655 4 |a статьи в журналах  |9 879358 
700 1 |a Borisov, Alexey V.  |d 1980-  |9 81640 
700 1 |a Syrkina, Anna G.  |9 506416 
700 1 |a Kuzmin, Dmitry A.  |9 102163 
700 1 |a Ryabov, Vyacheslav V.  |9 102928 
700 1 |a Boyko, Andrey A.  |9 135214 
700 1 |a Zakharova, Olga A.  |9 814195 
700 1 |a Zasedatel, Vyacheslav S.  |9 853856 
700 1 |a Kistenev, Yury V.  |9 99223 
773 0 |t Journal of breath research  |d 2021  |g Vol. 15, № 2. P. 027104 (1-15)  |x 1752-7155 
852 4 |a RU-ToGU 
856 4 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000924834 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=924834 
908 |a статья 
999 |c 924834  |d 924834 
039 |b 100